CHAPTER 7:

SECOND ORDER DERIVATIVES

7.1 THE SECOND ORDER DERIVATE $f_{x x}(x, y)$

We have already established that $f_{\mathrm{x}}(x, y)$ represents the slope in the x direction. If the derivative of $f_{\mathrm{x}}(x, y)$ with respect to x is taken, the result is:

$$
\frac{\partial f_{x}(x, y)}{\partial x} \approx \frac{\Delta f_{x}(x, y)}{\partial x} \approx \frac{\Delta m_{x}}{\Delta x}
$$

Geometrically, this is the rate at which the slope in the x direction is changing as we move in the x direction.

To visualize this geometrically, we can start by observing the graph of $f(x, y)=x^{2}+y^{2}$ shown in the graph below.

By taking the partial derivate with respect to x and evaluating it at the appropriate point, we can conclude that $(0,0,0)$ the slope in the x direction is 0 .

By taking the partial derivate with respect to x and evaluating it at the appropriate point, we can conclude that at $(2,0,4)$, the slope in the x direction is 4 .

Correspondingly, the change in $f_{\mathrm{x}}(x, y)$ is 4 as we move 2 units in the x direction.

Hence, we can conclude that

$$
\frac{\partial f_{x}(x, y)}{\partial x} \approx \frac{\Delta f_{x}(x, y)}{\partial x} \approx \frac{\Delta m_{x}}{\Delta x}=\frac{4}{2}=2
$$

7.2 THE SECOND ORDER DERIVATE $\boldsymbol{f}_{y y}(\mathrm{x}, \mathrm{y})$

We have already established that $f_{\mathrm{y}}(x, y)$ represents the slope in the y direction. If the derivative of $f_{\mathrm{y}}(x, y)$ with respect to y is taken, the result is:

$$
\frac{\partial f_{y}(x, y)}{\partial y} \approx \frac{\Delta f_{y}(x, y)}{\partial y} \approx \frac{\Delta m_{y}}{\Delta y}
$$

Geometrically, this is the rate at which the slope in the y direction is changing as we move in the y direction.

To visualize this geometrically, we can follow the same procedure we followed with $f_{\mathrm{xx}}(x, y)$ and the surface $f(x, y)=x^{2}+y^{2}$. By taking the partial derivate with respect to y and evaluating it at the appropriate point, we can conclude that ($4,0,16$), the slope in the y direction is 0 . By taking
the partial derivate with respect to y and evaluating it at the appropriate point, we can conclude that at $(4,2,20)$, the slope in the y direction is 4 .

Correspondingly, the change in $f_{y}(x, y)$ is 4 as we move 2 units in the y direction. Hence we can conclude that

$$
\frac{\partial f_{y}(x, y)}{\partial y} \approx \frac{\Delta f_{y}(x, y)}{\partial y} \approx \frac{\Delta m_{y}}{\Delta y}=\frac{4}{2}=2
$$

7.3 THE SECOND ORDER DERIVATE $f_{x y}(x, y)$

We have already established that $f_{x}(x, y)$ represents the slope in the x direction. If the derivative of $f_{x}(x, y)$ with respect to x is taken, the result is:

$$
\frac{\partial f_{x}(x, y)}{\partial x} \approx \frac{\Delta f_{x}(x, y)}{\partial x} \approx \frac{\Delta m_{x}}{\Delta x}
$$

Geometrically, this is the rate at which the slope in the x direction is changing as we move in the x direction.

We can follow the same procedure to approximate $f_{\mathrm{xy}}(x, y)$ that we followed in previous sections to determine $f_{\mathrm{xy}}(0,0)$ on the surface $f(x, y)=x y$. The slope of the tangent line in the x direction at the point $(0,0,0)$ is equal to zero. The slope of the tangent line in the x direction at the point $(0,2,0)$ on the surface $f(x, y)=x y$ is equal to two.

Correspondingly, we can conclude that

$$
\frac{\partial f_{x}(x, y)}{\partial y} \approx \frac{\Delta f_{x}(x, y)}{\partial y} \approx \frac{\Delta m_{x}}{\Delta y}=\frac{2}{2}=1
$$

